Gjesdal 800 FIVEinONE rotary seed cleaner Operator's manual
This copy is a condensed summary of the indent cylinder operation as presented by Mr. Meadows.

THE INDENT CYLINDER

by

William W. Meadows

Northland Machinery Supply Co. Limited

Exclusive Canadian Distributors

The Superior Company
Hopkins, Minnesota

Presented at the
"SEEDSMEN'S SHORT COURSE"

Sponsored by
Alberta Department of Agriculture

Edmonton, Alberta

January 23 - 25, 1963
This manual has been prepared using material as supplied to us by:

Mr. Harvey Gjesdal C.M.
Box 425
Birch Hills, Saskatchewan, Canada
SOJ OGO
306-749-3528

The Model 800 Gjesdal Cleaner is manufactured in Saskatchewan.
NOTICE TO BUYERS

Silverthorn's seeds Ltd. shall limit the warranty of items sold to the amount of the purchase price. Silverthorn's Seeds Ltd., our employees or representatives, make no other warranties; guarantees or conditions; express or implied with respect to this machine or its performance.

By acceptance of this machine the original Purchaser acknowledges that this warranty and disclaimer herein before described are conditions of sale and that they constitute the entire agreement between the Vendor; Silverthorn's Seeds Ltd. and the original Purchaser regarding warranty and/or any other liability or conditions.

The original Purchaser shall have 10 days after purchase date to accept this machine or advise Silverthorn's Seeds Ltd., in writing, of any disagreement. No warranty will cover misuse or damage in any way and any machine may not be accepted for return which is not returned in factory original condition.
INTRODUCTION

The importance of clean seed has been recognized since the beginning of grain production. Uncleaned grain often contains a wide variety of weed seeds, off types grains, cracked and broken kernels, small stones and other material, as well as bits of straw & chaff. All of this material, commonly referred to as dockage, must be removed if the grain is to be used as seed.

To remove all "dockage" from a sample of grain, a number of cleaning methods must be used. A variety of cleaning equipment has been designed over the years, using different cleaning principles to perform very specialized cleaning functions.

Most will remember the fanning mills common on many farms years ago. These cleaners just could not remove all weed seeds from the grain.

The Carter Disk Cleaner came along in the late 1920's and was used extensively for cleaning wheat, with fairly good results but, again, it could not separate all weed seeds. Its specific function was based on length separation.

The need to place several cleaning operations in series became evident. This has been done for years at commercial seed cleaning plants.

There are numerous advantages to on-the-farm seed cleaning. There are reduced trucking costs. There is no risk of introducing new weed seeds to your farm. There is no time spent waiting your turn at a cleaning plant. And there is better use of your time while your seed is being cleaned.

INSTALLATION DATA

Your Gjesdal Five-in-One Rotary Seed Cleaner is designed to work as a scalper, aspirator, and grader. A variety of sieves are available for a wide variety of seeds and there is also a variety of slotted and round hole grader shells. The two indent drums that come with the machine will cover a wide variety of seeds and additional drums are also available.

The machine must be set level and all moving parts must operate freely. Allow enough room for you to move around the machine. You will need 9 feet at the clean grain discharge end for the removal of grading shells and the indent drums.
A pipe, the same size as the 90-degree elbow used for the air discharge, should be used to carry the dust outside the building or into a dust bin. Where a dust bin is used, a large air outlet from the air bin is required so as not to restrict the flow of air from the cleaner. The cleaner can be set up permanently indoors or it can be used as a portable unit on a trailer with suitable conveyers to handle the seeds and screenings.

If this precision machine is operated out of doors, always cover it when not in use by a tarpaulin. A combination of moisture, rust and wet dust will seriously affect the cleaner's operation.

The purpose of this manual is to help you realize the benefits you expected when you bought this seed and grain cleaner. The way you operate and the care you give this precision cleaner will have much to do with its successful performance.

This manual has been carefully prepared and the information arranged and illustrated to make it as easy as possible for you to find the information you need.

Silverthorn's Seeds Ltd., or Harvey Gjesdal or your sales representative will be glad to answer any further questions you may have on the operation or care of this cleaner.

CAUTION:

All moving parts are dangerous. The guards are installed for your protection. Do not remove them. Do not wear loose clothing around machinery and keep children out of the work area.
The grain is first conveyed into the hopper at the top of the machine #1. Ways of placing the grain here will be discussed later. The feed roller and the control gate #2 control the rate of grain flow down onto the one and only sieve on the machine.

As the grain drops down to the sieve it passes through a brisk air flow which removes the lighter than desired material into the aspirator which is then discharged at point #3.

Here the light material can be directed into the small seeds hopper collecting from the grader shells or it can be diverted off and kept separate #4.
The air flow can be adjusted using the control lever #5.
The fine dust from the air discharge spout #6 should be directed outside the building. The spout can be set in any of four different directions to achieve the most convenient outlet.
The oscillating sieve allows the desired grain to fall through the perforations onto a pan below which directs it to one of the three grader shells. The large material is carried to the end of the sieve and falls into an auger and is carried away with the light material from the scalper.

As the grain enters the grader shells the thin seeds are removed and are discharged at point #7.
The desired grain is now fed into the first indent drum which has the small size pockets which remove the short seeds and discharge them at point #8.

The desired grain after passing through the small indent drum is discharged into the vertical conveyor and on into the second indent drum with the larger pockets. While passing through this indent drum the long seeds are separated out and are discharged at point #9.

The clean grain comes out of the spout #10 after passing through a air suction which removes any remaining light material. See bulletin attached on The Indent Cylinder by W.W. Meadows.
The flow of uncleaned grain into the cleaner is controlled with the adjustable feed gate. Choose a sieve that has holes just large enough for the good grain to fall through before it reaches the lower end of the sieve. See page for recommended sizes of sieves and drums for various crops.

A uniform current of air is drawn through the flow of grain as it drops from the feed roller down to the sieve. This air flow can be adjusted by control lever #5 and should be set so a very small amount of good grain comes out of the aspirator auger #3 as you are then making maximum use of this separation. The larger material that does not fall through the sieve as fed down to the auger #3.

The smaller material which fell through the sieve is fed to the three grader shells where the thinner than desired material is removed. These thin seeds come out from an outlet between the two indent drums at the grader shell end of the machine.

The grain from the grader shells is now fed into the indent drum with the smallest pockets where the shorter than desired material is removed.

The pockets in this drum lift the short material into the trough in the centre where it is conveyed out at point #11.

The good grain which remains in the bottom of this drum falls into the vertical auger #12 where it is fed into the drum with the large pockets.

This indent drum now lifts the desirable grain and places it in the trough where it is augered out at the clean grain spout #10.

The long seeds remain in the bottom of the drum and are fed out at the lower end of this indent drum close to the point where the thin seeds are fed out.

The sieve and drums which are factory installed are quite suitable for cleaning all types of wheat and most barley varieties. For a starting speed to clean wheat set both indent drums to run about #8 RPM, if you start on barley set both drums at about 54 RPM. Next set the trough in both drums so the edge of the trough on the lifting side is about 45° as per diagram on next page.
CAUTION: Be careful not to dint any of the sieves; indent drums; or grader shells when you are handling them.

Caution: Be careful of moving parts. Do not place hands or lights inside the machine when the machine is running.

Use levers shown at left to set the troughs.
Open round doors #14 to inspect the position of the trough in both of the indent drums.
Make sure all hands are clear and start up the machine. If the short material that is lifted does not fall into the conveyer trough on the small pocket drum, the seperating edge may be too low. It is very important to wait a minute or two between each adjustment while the flow of grain stabilizes. Another very important adjustment is the speed of the drum since higher speeds generate more centfriical force and in turn lift the grain higher. Slower speeds will drop the kernels earlier.
The efficiency of the machine is governed to a large extent by the speed. The grader shells operate at a constant speed of 56 RPM but there are important speed adjustments for the two indent drums. These drums usually turn less than one turn per second so you can count the turns and watch the second hand on a watch. Place a piece of tape on to the drum to aid count.

The speed of the indent drums can be regulated by the wing bolt handles at point #15 and should be adjusted each time you begin cleaning another seed lot. If the speed is too fast, the cylinder pockets will have a tendency to lift the longer material due to the centrifugal force. If the speed is too slow, the cylinder pockets won't lift all of the shorter material and the capacity will be decreased.

**OTHER CYLINDERS AND INDENTS**

This precision machine is very versatile. As you become acquainted with the machine, many more uses will be found for it on the farm.

A wide variety of grader shells, sieves and indent cylinders are available for this cleaner. Carter Day Ltd. at Box 488 Winnipeg, Man. R3C 2J6 provide a laboratory service to help you choose the right drums and sieves. Simply send a three-pound sample of the seeds you wish to clean to the above address. Carter Day will advise you as to the proper shells and sieves to use. General shell recommendations for various crops are provided on page 14.
CLEANING VARIOUS CROPS

PEAS

Peas do not process well when passed through an indent drum. The 800 Gjesdal comes with a pea discharge hopper. Remove the catch hopper where the grader shells discharge into the small indent. Replace the removed hopper with the pea hopper which discharges the desired seed out the side of the machine.

OATS

The cleaning machine is equipped with a sieve; grader shells; and indent drums to process oats. The main change required with this crop is that the large indent will not pick up the desired seed into the trough. The desired oat seed will be discharged out the indent where wheat screenings normally come. A valve and lever are located on the clean seed discharge end. This valve must be moved over to direct the desired seed out the proper discharge spout.

CANOLA

Use a round hole in the scalping sieve just large enough to allow the desired seed to pass through. The slotted grader shells must be narrow enough to hold the desired canola inside. The standard indent drums should finish the separation process.

FLAX

Use a slotted scalping sieve with a slot perforation just wide enough to allow the flax kernels to drop through on edge. This will be approximately a 4/64 width. The grader shell should be a round hole small enough to hold the flax inside. The standard indent drums should finish the separation process.

CANARY SEED

This is an ideal machine to process canary seed. The grader shell dust control will remove a great deal of the fine dust which comes from this area of processing.
SAINFOIN

This crop is easily processed by the Model 800 cleaner. A problem with this crop is the immature seeds which are of similar size to mature seed; however they do not germinate. To do a total separation of this crop seed may require the use of a gravity machine as the final process.

ALFALFA AND CLOVERS

These crop seeds are difficult to process if they contain other seeds difficult to remove. A good processing job is more easily obtained on all crops if you start with a good quality product.

The standard shells and drums supplied with this machine will in most cases clean all wheat and barley types. A wide variety of shells; drums and sieves are available for many other crops.

OPTIONS AVAILABLE

- Bucket elevator as replacement for vertical auger.
- Screenings collection auger.
- Various size scalper sieves.
- Scalper sieve blank off panels.
- Proximity switches.
# Gjesdal Cleaner Shell Recommendations for Various Crops

<table>
<thead>
<tr>
<th>Crop</th>
<th>Scalper Shell Part No. Ex 1116</th>
<th>Grader Shell Part No. 245</th>
<th>Short Indent Shell Part No. Ex 1038</th>
<th>Long Indent Shell Part No. Ex 1037</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat - Red Spring</td>
<td>10/64&quot; x 1/4&quot; slot</td>
<td>5 1/4/64&quot; slot</td>
<td>No. 13</td>
<td>No. 20</td>
</tr>
<tr>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durum Wheat</td>
<td>10/64&quot; x 1/4&quot; slot</td>
<td>5 1/4/64&quot; slot</td>
<td>No. 13</td>
<td>No. 20</td>
</tr>
<tr>
<td>Optional</td>
<td>11/64&quot; x 1/4&quot; slot</td>
<td>5 3/4/64&quot; slot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barley</td>
<td>10/64&quot; x 1/4&quot; slot</td>
<td>5 1/4/64&quot; slot</td>
<td>No. 13</td>
<td>No. 20</td>
</tr>
<tr>
<td>Optional</td>
<td>11/64&quot; x 1/4&quot; slot</td>
<td>6/64&quot; slot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oats</td>
<td>10/64&quot; x 1/4&quot; slot</td>
<td>5 1/4/64&quot; slot</td>
<td>No. 13</td>
<td>No. 22</td>
</tr>
<tr>
<td>Optional</td>
<td></td>
<td>5/64&quot; slot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rye</td>
<td>10/64&quot; x 1/4&quot; slot</td>
<td>5 1/4/64&quot; slot</td>
<td>No. 13</td>
<td>No. 20</td>
</tr>
<tr>
<td>Optional</td>
<td></td>
<td>5/64&quot; slot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flax</td>
<td>Optional</td>
<td>4/64&quot; slot</td>
<td>5 1/4/64&quot; round hole</td>
<td>No. 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. 8 1/2**</td>
</tr>
<tr>
<td>Rapeseed - Argentine</td>
<td>6/64&quot; round hole</td>
<td>3 1/4/64&quot; slot</td>
<td>No. 4 1/2</td>
<td>No. 10</td>
</tr>
<tr>
<td>Optional</td>
<td>7/64&quot; round hole</td>
<td>3 3/4/64&quot; slot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapeseed - Polish</td>
<td>5 1/4/64&quot; round hole</td>
<td>3/64&quot; slot</td>
<td>No. 4 1/2</td>
<td>No. 10</td>
</tr>
<tr>
<td>Lentils***</td>
<td>11/64&quot; x 1/4&quot; slot</td>
<td>12 1/4/64&quot; round hole</td>
<td>No. 13</td>
<td>No. 20</td>
</tr>
<tr>
<td>Peas</td>
<td>20/64&quot; round hole</td>
<td>10/64&quot; slot</td>
<td>by-pass indent</td>
<td>by-pass indent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fababeanes</td>
<td>24/64&quot; round</td>
<td>11/64&quot; slot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canary Seed</td>
<td>9/64 round</td>
<td>4-4 1/2 RH</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Alfalfa &amp; Sweet Clover</td>
<td>3/64 x 5/16 slot</td>
<td>1/20 round</td>
<td>4 1/2</td>
<td>10</td>
</tr>
<tr>
<td>Mustard</td>
<td>Similar to Canola</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sainfoin</td>
<td>16/64 round</td>
<td>5 1/4/64 slot</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Tame Buckwheat</td>
<td>15/64 round</td>
<td>10/64 slot</td>
<td>13</td>
<td>20</td>
</tr>
</tbody>
</table>

*For barley only.
**For lady's thumb in flax.
***Special grader shell is now available to separate wheat or barley from lentils. They are a special ribbed shell with a 12 1/4/64" round hole.

Specifications subject to change without notice.
CHANGING THE GRADER SHELLS

- Shut off power supply to the entire machine.
- Remove the dust hood covering the grader shells.
- Remove the three bolts on the front and rear of each grader shell.
- Remove the end panel from the rear of the machine. The shaft support bushings are attached to this panel and will remain on the panel.
- Loosen the set screw on the rear spider hub and remove the hub.
- The grader shell will now slide out of the machine. The front spider hub and center shaft will remain in the machine.
- Before removing the shells note the direction of the spiral of the shells. Be sure to reinstall the shells back in the same way that they came out.
- Reassemble all parts. Be sure to reinstall the set screw in the spider hub so that it will tighten onto the flat surface of the shaft.

CHANGING THE INDENT SHELLS

- Shut off power supply to the entire machine.
- Loosen the drive belt at the front of the indent drum.
- Place a support under the drum so that it cannot drop and be damaged.
- Remove grader shell collection trough from the rear of the machine.
- Loosen the pinch bolt on the bottom of indent trough adjustment handle at either end of machine.
- Remove end plate at rear of the machine.
- Remove the three bolts at each end of indent drum that hold the hubs on.
- Carefully pull indent drum out using care not to damage the drum.
- Change the drum as desired and reassemble. Be sure to replace all parts and tighten all bolts and belts.
OTHER OPERATING POINTS TO CONSIDER

The sieve bumper can be regulated to hit the sieve harder on some jobs than others. It is suggested that the blow be kept to a minimum at all times for longer sieve life. The blow can be regulated by adjusting spring tension #16. More tension on the spring decreases the blow and less tension increases the blow.

To clean out machine between lots, turn both indent troughs upside down and open clean-out door at the bottom of the vertical auger and run the machine for a few minutes.

Lubricate chains with light oil and do not overtighten the belts, however all belts must be kept tight particularly those relating to the shaker shoe.

CAUTION: Be careful not to dint any of the sieves; indent drums; or grader shells when you are handling them.

LUBRICATION

The machine is equipped with several sealed bearings. All zerk fittings will require periodic lubrication daily. The sieve drive shaft will need extra lubrication. Lubricate the chains with light oil as required. Keep the chain as dust free as possible by daily brushing, with a steel brush just prior to applying oil. Apply light oil to all bushings daily.

Caution: Be careful of moving parts. Do not place hands or lights inside the machine when the machine is running.
## APPROXIMATE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Weight</th>
<th>1870 Lbs</th>
<th>850 Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Height</td>
<td>84 inches</td>
</tr>
<tr>
<td>Width</td>
<td>55 inches</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>115 inches</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>40-90 bushels per hour (depending on the type of seed)</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>Top drive</td>
<td>1 HP dust proof</td>
</tr>
<tr>
<td>Bottom drive</td>
<td>1 HP dust proof</td>
<td></td>
</tr>
<tr>
<td>Transfer auger</td>
<td>1/3 HP dust proof</td>
<td></td>
</tr>
<tr>
<td>All single phase motors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**GJESDAL FIVE-IN-ONE CLEANER**

**GUARANTEE**

The Gjesdal Five-in-One Grain Cleaner is made of the finest materials and is noted for its efficiency, mechanical simplicity and sound construction. This cleaner is built for minimum maintenance costs, maximum life, and outstanding cleaning performance.

All parts of the Gjesdal Cleaner are guaranteed against faulty workmanship. Any part found to be defective will be replaced, at no charge, for a period of 90 days after date of purchase.
THE INDENT CYLINDER

The Indent Cylinder is designed primarily to make a separation by length, as is the disc type indent unit. But you will see that there are other physical characteristics that enter into the separation made by the cylinder indent as well. In addition to the indent size, the cylinder utilizes the forces of gravity and centrifugal force. The particles to be removed from the mass are loaded into the indent by a combination of gravity and centrifugal force. After locating themselves in the pockets they are retained by the centrifugal force to a point of the rotation of the cylinder where gravitational forces overtake and the material discharges from the indent and is dropped or falls into a Receiving Trough where it is conveyed to a discharge spout. The smaller particles are placed in the Trough and longer particles are discharged as "throughs". These pass out the far end of the cylinder, opposite from the feed and without being lifted by the indents.

For a particle to be lifted, it's center of gravity must fall within the indent itself, otherwise it will tumble out. For some seeds the center of gravity is at, or near, the geometric centre, and at others it is displaced greatly from this geometric point. Therefore, it will depend which way a seed orients itself in the indent as to whether or not it is lifted, and the seeds must have the opportunity to enter the indent properly before being discharged as a "through". No matter what cylinder machine is used, there are five main sections or functional areas of the machine and each perform a definite part of the separational process.

1. THE CYLINDER ITSELF -- and this of course is the main element, in that it is the actual divider of the machine and all other parts simply aid the cylinder in accomplishing its purpose. As stated earlier the cylinder's function is to lift the smaller particles out of the grain mass the correct distance to make the desired separation. The cylinder is simple a thin walled tube with indents formed from the inside to the shape approximating a hemisphere. The indent sizes are usually listed in 64's of an inch similar to screen sizes used in screen machines. There are no other figures or letters normally used to describe the indents, other than this diametrical number.

It has been stated that the first cylinder was fashioned out of a hollow log by drilling from the inside a series of shallow holes. We feel that much progress has been made since this first attempt but the basic principle still remains the same.

The modern cylinder as we know it today utilizes a special steel which is precisely punched by large mechanical presses to the desired indent. This is usually done on the flat in small size sheets, as the pressure required for the formation of these indents is very great. These sheets are then hand-welded together and rolled to form the tube and are then case hardened. It is this hardening of the cylinder that gives it its extremely long life. Were it not hardened its life expectantancy would be very short.
2. **THE RECEIVING TROUGH** -- In different machines the shape of the Receiving Trough varies somewhat, but the purpose remains the same. -- To accumulate the lifted particles and convey them to a discharge spout. This Trough is adjustable in order to make the cut or separation at the exact point of particle size variation desired. This separation is usually made within an area of about 60o to 45o ahead of top dead centre of the cylinder. By proper adjustment of this Trough very good flexibility of operation is possible, and we feel that it is this flexibility that gives the cylinder its definite advantage over competitive length separation equipment. Also this Receiving Trough is normally adjustable to the point that it can be dumped. This is extremely important when a unit of this type is used for seed cleaning and this allows the trough to be cleaned out.

3. **THE RETARDER** -- This is most easily described as a dam at the discharge end of the cylinder, and it should be of the adjustable type. In order to be most accurate the grain bank in a cylinder should be relatively uniform. Without the Retarder the grain mass would be less at the Discharge end of the cylinder due to the depletion of smaller particles and surging of the grain bank may result. By this we mean that the material will not roll as it should, but the entire mass will move or slide with the cylinder up to a point were friction will no longer support it, and then it all slides back in a single mass.

This will also occur in the cylinder if it is insufficiently loaded. By retarding the discharge of the cylinder, grain depth can be built up to the desired level and maintained at that point where best operation occurs. The adjustment of the Retarder will depend on the type of seed being processed. If the grain level is allowed to drop near the discharge end of the cylinder, inaccurate separation will result.

As the grain passes through the cylinder, we can readily see the following procedure taking place. The smallest particles are lifted out near the feed end of the machine. Sometimes with more than one particle located in a single indent. As the grain progresses through the cylinder, the slightly longer particles are lifted into the Receiving Trough. The toughest division always takes place near the Discharge End after the small particles are depleted. If the cylinder is allowed to starve at that end, larger particles will be lifted if the grain bank is not maintained at a proper level. The indent size cannot accurately perform a length separation unless sufficient depth of material is present. This same Retarder must also be designed so that it can be removed or displaced so that the Cylinder can be quickly and completely cleaned out. This, of course, is especially true where Cylinder Indents are cleaning seed.

4. **FEEDER TO THE INDENT CYLINDER** -- It is very important that the metering be constant if the separation to be accomplished is to be consistent. If the feed varies, all particles will not have the same length of time to be separated as did others. Also with an uneven feed your trough settings cannot be accurate due to the fact that for a heavier feed Trough settings should be lowered slightly and vice versa.
Those five components are usually in a Housing consisting of an Intake Hopour or Spouting and also the Discharge Spouting from the Unit or to additional Cylinders. In this Housing are usually various visual inspection ports which allow the operator to actually view the internal operation of the unit, and assist in making necessary adjustments. This housing also incorporates the Trough Adjusting Mechanism and a Dial to indicate the Trough positioning. The Housing also usually includes the necessary drive for the cylinder itself -- whether singly or in multiple units.

......

We now come to the actual operation of the Cylinder Indent, and of course the first choice is the actual indent size required. As mentioned previously the indents are sized in 64's of an inch similar to screens and in the case of the Superior units are available in indents from #4 to #36.

As you can see these would cover the majority of small seeds and cereal grains. Having chosen the indent size required for the separation desired the actual cylinder speed is of next prime importance.

The average Superior utilizes a cylinder of 23" diameter and according to a long formula the theoretical equilibrium SPEED for this cylinder is 55.5 r.p.m. At exactly this speed materials would cease to empty. However, several physical properties change our frictionless conditions by introducing friction of various amounts. This friction is dependent on the shape of seed, seed coat textures, size of seed and moisture content. Also the Specific Gravity of the seed has some effect on the separation. These frictional forces tend to cause particles to follow the circumferential travel further than calculated, so the speed must be reduced considerably below the theoretical 55.5 r.p.m. In actual operation cylinder speeds from 42 to 53 r.p.m. are used; and as an example we have found that on wheat a top speed of 51 r.p.m. is indicated.

Due to the fact that various seeds, moisture and surface conditions require a different speed for optimum separations, it is desirable to have each unit equipped with a Variable Speed Drive and this is now general practice in units that are being used for Seed Cleaning purposes. Whatever the motive power of the Cylinder Indent, it is of prime importance that the speed is constant. Any fluctuation in speed of the Cylinder will affect the trough setting and separations radically.

After speed the most important operational setting is the actual Trough Adjustment. This, of course, is where the cylinder indent gets a great deal of its flexibility. Naturally the lower your trough is set the larger the particles you pick-up and the reverse if it is raised.

Also, as mentioned previously the Trough Adjustment should be such that the Trough itself can be dumped into a clean-out position. This, of course, is a prime requisite if the unit is used for cleaning seed. The accuracy of the Trough setting is also dependent to some degree on the actual diameter of the cylinder. As you can see, the larger the diameter of the cylinder the more Trough movement you have available within the operating range.

The 23" diameter cylinder as used in the Superior units gives a good degree of accuracy to the trough setting and also we feel, a reasonable capacity per cylinder.
The Capacity per cylinder unit is dependent on three basic factors:

(1) The number of pockets or indents per square foot area -- and this is governed by the indent size.

(2) The amount of cylinder surface that can be run under the grain bank in a given time -- and this is relative to the indent length of the cylinder. The cylinders are manufactured in various lengths depending on the type of job required, but in the Superior machines the most common length is approximately 85".

(3) The third factor governing capacity is the percentage of seed mass that must be lifted into the Receiving Trough.

Due to the wide variety of seed separations that are made on the Cylinder Indent, it is very difficult to give any statement as regards to capacity. It is possible it could vary anywhere between 25 to one or two hundred bushels per hour per cylinder unit.

It should also be pointed out that when cylinders are replaced or a machine is brand new, that in some instances, it is desirable to run a coarse grain, like barley, through the cylinders to absorb the oil that is used as a rust preventative for shipping purposes -- or wash the cylinders in solvent. If a small dusty type seed is cleaned with the cylinders in this condition, it is quite possible that the indent pockets will become plugged. Also, when the unit is handling an oily material such as flax, the indents may have a tendency to fill up with dust imbedded in the oil. Thus the effective depth of the indent is lowered, and periodical scouring may be needed.

Compared to other methods of length separation of grain, the Cylinder Indent utilizing the case-hardened punched indent, steel cylinder enjoys a relatively long life. As the cylinder indent wears, it will be necessary to lower the Trough slightly and/or increase the speed slightly; because as the pocket shoulder wears down the degree of friction in the cylinder is less. Cylinders will quite often make reasonable separations even when worn to a point of being perforated on the shoulders. The amount of grain or seed that can be put through any given cylinder is a difficult thing to pin down, due to the various soil conditions the grain is grown in, moisture content and seed surface texture. The life of a cylinder on cereal grains will vary anywhere from one half million up to two or three million bushels. Where a unit is used first in the cleaning line-up, the cylinder life is less than it would be if it is further down the line due to the fact that all the sand, stones and abrasive material in the grain goes to the cylinder indent first.

The Indent Cylinder Unit is no better than the operator running it, and if you will take the time to understand the operation of your unit and allow a reasonable amount of time, after making adjustments, so that the machine can settle down to these adjustments; we are sure you will find that the Indent Cylinder -- regardless of make -- will do a job for you and will do this job with a minimum of attention and service for an extended period of time.

We trust this has given you a better understanding of the design and operation of one of your basic separating units.